Sequences, Series, and Power Series
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Example: Consider the sequence a, =

diverges to .

2. The alternating series formed from this sequence is
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diverges by the alternating series test

3. A power series formed from this sequence is
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Then the radius of convergence and the interval of convergence are found by determining:
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by definition, the radius of convergence Ris R =2 = 1. We know that the power series
¢
converges for -1 < x < 1 since
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and diverges on (-o,-1)u(1,). At x=1 or x=-1, we must check the resulting series. Atx=1, we
get Yoo, 22t whlch we already saw diverges, and at x=-1, we get Ym-,(—1)"*? -2"—” which we
already saw dlverges.

Thus, the interval of convergence is (-1,1)



